NUMERICAL APPROXIMATION OF DIRICHLET PROBLEM IN BOUNDED DOMAINS AND APPLICATIONS

Oana RACHIERU, Alina STOICA
Faculty of Mathematics and Computer Science, "Transilvania" University, Brasov, Romania

Abstract

We consider numerical approximation of Dirichlet problem for the Laplace equation in a domain $D \in R^{d}$, that is we will consider the problem of finding a C^{2} function $u=u(z) \in C^{2}(D) \cap C^{0}(\bar{D})$ such that $\left\{\begin{array}{l}\Delta u=0, i n D \\ u=f, \text { on } \partial D\end{array}\right.$. Using probabilistic methods we can give explicit reprezentation of solution of Dirichlet problem $u(z)=E^{z} f\left(B_{\tau_{D}}\right)$, where B_{t} is a Brownian motion starting at $B_{0}=z, E^{z}$ denotes the expectation of function in $B_{\tau_{D}}$, and $\tau_{D}=\inf \left\{t \geq 0, B_{t} \notin D\right\}$ is the exit time of Brownian motion from D. We give a Mathematical implementation of function $u(z)$ for different choices of f and domain D (half-plane, unit disc, rectangle, triangle) and we apply it to obtain some numerical results.

Mathematics Subject Classifications 2011: 60J65, 35J05, 65C30, 68U20.
Keywords: Brownian motion, Dirichlet problem, Laplace equation, stochastic differential equations, simulation.

1. INTRODUCTION

The Dirichlet Problem is named after German mathematician Gustav Lejeune Dirichlet (1805-1859) (see [3]).

The Dirichlet problem for harmonic functions always has a solution, and that solution is unique, when the boundary is sufficiently smooth and f is continuous.

The goal of the present paper is to present some applications of Brownian motion in solving classical differential equations: the Dirichlet problem.

Brownian motion, named after the Scottish botanist Robert Brown in 1828, is the unique process with the following proprieties:
a) No memory, which means that $B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, B_{t_{3}}-B_{t_{2}}, \ldots \quad$ are independent;
b) Invariance, which means that the distribution of $B_{s+t}-B_{s}$ depends only on t
c) Continuity which means that $t \rightarrow B_{t}$ is continuous a.s. and $t \rightarrow B_{t}$ is nowhere differentiable a.s.
d) $B_{0}=0$, with mean $E\left(B_{t}\right)=0$ and $\operatorname{variance} \operatorname{Var}\left(B_{t}\right)=t^{2}$.
Definition. A d-dimenional Brownian motion starting at $x \in R^{d}$ is a stochastic process B_{t} with the following proprieties:
a) $B_{0}=0$;
b) For all $0 \leq s<t, B_{t}-B_{s}$ is a normal random variable $N(0, t-s)$;
c) B_{t} is almost surly continuous.

2. THE DIRICHLET PROBLEM

2.1 The Dirichlet Problem. We will consider the well-known Dirichlet Problem for a domain $D \subset R^{d}$, this is we will consider the problem of finding a harmonic function in a given domain D, continuous on \bar{D}, with fixed boundary values on ∂D, satisfying the following initial value problem: find $u \in C^{2}(D) \cap C^{0}(\bar{D})$ which solves

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \mathrm{D} \tag{1}\\
\left.\mathrm{u}\right|_{\partial \mathrm{D}}(x, y)=f(x, y), \forall \mathrm{z}=\mathrm{x}+\mathrm{iy} \in \partial \mathrm{D}
\end{array}\right.
$$

where Δ denote the Laplacian operator, namely the differential operator in the variable $x=\left(x_{1}, x_{2}, \ldots, x_{n} \in R^{d}\right)$

$$
\Delta_{x}=\sum_{j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\right)^{2}
$$

and f is a given function, continuous on boundary of the domain D.

In general, the solution of the above boundary value problem may not exist. However the existence of the solution is closely related to the regularity of the boundary of the domain D.
Definition. A point $x \in R^{d}$ is called regular for the set $A \subset R^{d}$ if a Brownian motion starting at x enters the set A immediately, that is

$$
P^{x}\left(T_{A}=0\right)=1,
$$

where $T_{A}=\inf \left\{t>0: B_{t} \in A\right\}$ is the hitting time of the set A by a d-dimensional Brownian motion B_{t} starting at x.
Example. a) The point $z_{0}=0$ is regular for the ball $B(1,1)$, but is not regular for $B(0,1) \backslash\{0\}$.
b) In the case of unit $\operatorname{disk} U=\left\{x \in R^{2}:|x|<1\right\}$, all points on the unit circle $\partial U=\left\{x \in R^{2}:|x|=1\right\}$ are regular for U^{c}.

Under minimal regularity conditions on D and f, the main result is the following:
Theorem. Let $D \subset R^{d}$ be a bounded domain for which every point of ∂D is regular for D^{C}. If $f: \partial D \rightarrow R$ is a continuous function, then there exists a unique solution of the Dirichlet problem (1), explicitly given by

$$
\begin{equation*}
u(x)=E^{x} f\left(B_{\tau_{D}}\right) \tag{2}
\end{equation*}
$$

where

- B_{t} is a d-dimensional Brownian motion starting at $x \in \bar{D}$;
$-\tau_{D}=\inf \left\{t>0: B_{t} \notin D\right\}$ is the lifetime of the Brownian motion B_{t}, killed on exiting D;
- E^{x} denotes the expectation of function f in the exit point $B_{\tau_{D}}$ of the Brownian motion B_{t} from domain D.
Proof. See [4, p. 111-113].
Example. Consider the domain $D=B(0, r)$ and the function $f(x, y)=x^{2}-y^{2}$. Then the probabilistic solution is the following:

$$
u(x)=E^{x} f\left(B_{\tau_{B(0, r)}}\right)
$$

and $u(0)=E^{0} f\left(B_{\tau_{D}}\right)=\frac{1}{2 \pi \mathrm{r}} \underset{\partial \mathrm{B}(0, \mathrm{r})}{\int} f(y) d y$.
For $\partial B(0, r)$ we have $z=r e^{i t}$ and $d y=r d t$.

$$
\begin{aligned}
& \Rightarrow u(0)=\frac{1}{2 \pi r} \int_{0}^{2 \pi} f(r \cos t, r \sin t) r d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}(r \cos t)^{2}-(r \sin t)^{2} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} r^{2}\left(\cos ^{2} t-\sin ^{2} t\right) d t \\
& =\frac{r^{2}}{2 \pi} \int_{0}^{2 \pi}(\cos 2 t) d t
\end{aligned}
$$

"HENRI COANDA"
AIR FORCE ACADEMY ROMANIA

AIRTEC

GERMANY

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER

AFASES 2011
Brasov, 26-28 May 2011

$$
=\left.\frac{r^{2}}{2 \pi \mathrm{r}}\left(\frac{\sin 2 t}{2}\right)\right|_{0} ^{2 \pi}=0 .
$$

2.2 A numerical algorithm. We will consider D to be the closed triangular domain with vertices $(-a, 0),(b, 0)$ and $(0, c)$. We will try to elaborate an algorithm for discretizing the killed Brownian motion in a simply bounded domain, using some recent results (see [1]) and [2]).

First, if $\left(X_{2^{-2 k_{n}}}^{k}\right)_{n \in N}$ is a simple random walk on the lattice $D \cap 2^{-k} Z^{2}=D_{k}$ which jumps to one of its nearest neighbors every $2^{-2 k}$ units of time, we obtain that $X_{t}^{k} \overrightarrow{k \rightarrow \infty} B_{t}, \mathrm{t} \geq 0$, for a chosen level of discretisation $k \in N$.

We consider $n=\left[t 2^{2 k}\right]$ and $X_{0}=0$.
The numerical approximation of the value $f\left(B_{t}\right)$, where B_{t} is a killed Brownian motion in D starting at the point $x=\left(x_{1}, x 2\right) \in D$, is given by

$$
f\left(B_{t}\right) \approx f\left(X_{t}\right) .
$$

Then the numerical approximation of expected value $E^{x} f\left(B_{t}\right)$ is given by

$$
E^{x} f\left(B_{t}\right)=\frac{f\left(X_{t}^{1}\right)+\ldots+f\left(X_{t}^{N}\right)}{N} .
$$

2.3 Using Mathematica softwere. Using Mathematica (see [5]) source presented below, we obtain the approximating domain D_{1} in the Fig. 1 below, in the case of a triangle with vertices at $(-4,0),(2,0)$ and $(0,6)$ (See article).

For an arbitrarily fixed $k \in N^{*}$, note that $\left(\frac{i}{2^{k}}, \frac{j}{2^{k}}\right) \in D_{k}$ if and only if $i, j \geq 0$ and

$$
\left\{\begin{array}{l}
-\frac{i}{a 2^{k}}+\frac{j}{c 2^{k}}-1 \leq 0 \\
\frac{i}{b 2^{k}}+\frac{j}{c 2^{k}}-1 \leq 0
\end{array}\right.
$$

Which shows that D_{k} can be written as follows
$D_{k}=\bigcup_{j=0}^{\left[c 2^{k}\right]}\left\{\begin{array}{l}\left(\frac{i}{2^{k}}, \frac{j}{2^{k}}\right): \\ -\left[\frac{a}{c}\left(c 2^{k}-j\right)\right] \leq i \leq\left[\frac{b}{c}\left(c 2^{k}-j\right)\right]\end{array}\right\}$
$a=4 ; b=2 ; c=6 ; k=3$;
$\mathrm{abc}=\{\{\mathrm{b}, 0\},\{0, \mathrm{c}\},\{-\mathrm{a}, 0\},\{\mathrm{b}, 0\}\} ;$
triangle $=\{$ Thickness $[.01]$, RGBColor $[1,0,0], \mathrm{Li}$
ne[abc]\};
incr=($\left.1 / 2^{\wedge} \mathrm{k}\right)$;
$x=$ Table $\left[i^{*}\right.$ incr, $\left\{i,-\right.$ IntegerPart[a* $\left.2^{\wedge} \mathrm{k}\right]$,
IntegerPart[b*2^k]\}];
$\mathrm{y}=$ Table[j*incr, $\left\{\mathrm{j}, 0\right.$,IntegerPart[c* $\left.\left.\left.2^{\wedge} \mathrm{k}\right]\right\}\right]$;
imin=Table[-IntegerPart[a*2^k-a*j/c],
\{j,0,IntegerPart[c** $\left.\left.\left.{ }^{\wedge} \mathrm{k}\right]\right\}\right]$;
imax $=$ Table[IntegerPart $[\mathrm{b} * 2 \wedge \mathrm{k}-\mathrm{b} * \mathrm{j} / \mathrm{c}]$, $\left\{j, 0\right.$, IntegerPart $\left.\left.\left[\mathrm{c}^{*} 2^{\wedge} \mathrm{k}\right]\right\}\right]$;
points $=$ Table[Disk[$[x[[i+1]], y[[j+1]]\}, 0.05],\{j$
, 0, IntegerPart[$\left.\left.\mathrm{c}^{*} 2^{\wedge} \mathrm{k}\right]\right\},\{\mathrm{i}, \mathrm{imin}[[j+1]]+$ IntegerP $\operatorname{art}\left[\mathrm{a}^{*} 2^{\wedge} \mathrm{k}\right]$,imax $[[\mathrm{j}+1]]+\operatorname{IntegerPart[a*2\wedge \mathrm {k}]\}];}$ Graphics[\{RGBColor[0,0,1],GraphicsGroup[\{ triangle,points $\}]\}$,GridLines \rightarrow Automatic,
Axes \rightarrow Automatic,AspectRatio \rightarrow Automatic,
PlotRange $\rightarrow\{\{-\mathrm{a}-1, \mathrm{~b}+1\},\{-1, \mathrm{c}+1\}\}]$
Neighbour: $=$ Function $[\{\mathrm{i}, \mathrm{j}\}, \mathrm{nbs}=\{ \}$;
If $[i+1 \leq \operatorname{imax}[[j+1]]$,
nbs=Append[nbs, $\{\mathrm{i}+1, \mathrm{j}\}]]$;
$\operatorname{If}[\operatorname{imin}[[j+1]] \leq i-1, n b s=A p p e n d[n b s,\{i-1, j\}]] ;$
$\operatorname{If}\left[\left(\mathrm{j}<\operatorname{IntegerPart[} \mathrm{c}^{*} 2^{\wedge} \mathrm{k}\right]\right) \& \&(\operatorname{imin}[[j+2]] \leq \mathrm{i})$ $\& \&(i \leq \operatorname{imax}[[j+2]]), \mathrm{bs}=$ Append[nbs, $\{\mathrm{i}, \mathrm{j}+1\}]] ;$ $\operatorname{If}[(\mathrm{j}>0) \& \&(\operatorname{imin}[[j]] \leq i) \& \&(i \leq \operatorname{imax}[[j]])$, nbs=Append[nbs, \{i,j-1\}]];
nbs[[RandomInteger[\{1,Length[nbs]\}]]]];

Fig. 1. The approximating domain D_{1}
Increasing the discretization level to $\mathrm{k}=4$, we obtain more points-neighbors, as in Fig. 2 below.

Fig. 2. The approximating domain D_{4}

For a given function f we will obtain a numerical approximation of the expected value $E^{x} f\left(B_{t}\right)$ with respect to a Brownian motion in a triangle starting at x of the value of the function f at the point B_{t}, value that correspondes to the solution of the Dirichlet Problem $u(x)=E^{x} f\left(B_{\tau_{D}}\right)$, in the given triangular region.

REFERENCES

1. Burdzy, K., Chen, Z.-Q., Discrete approximations to reflected Brownian motion. CIn: Annals of Probability 36, No. 2, pp. 698-727 (2008).
2. Gageonea, M.E., Rachieru, O., Numerical approximation of reflecting Brownian motion in bounded domains and applications. $22^{\text {th }}$ Scientific Session on Mathematics and its Applications, Transilvania University from Braşov (2008).
3. Jurgen, E., The Life and Work of Gustav Lejeune Dirichlet (1805-1859). Clay Mathematics Proceedings. Retrieved 2007-12-25 (2007).
4. Pascu, M. N., Brownian motion and applications. Braşov. Transilvania University of Braşov (2006).
5. http://www.wolfram.com/
