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Abstract: We consider numerical approximation of Dirichlet problem for the Laplace equation in a 
domain dRD∈ , that is we will consider the problem of finding a function 2C

)()()( 02 DCDCzuu ∩∈=  such that . Using probabilistic methods we can give explicit 

reprezentation of solution of Dirichlet problem  , where  is a Brownian motion 
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zE denotes the expectation of function in , and 

D
Bτ },0inf{ DBt tD ∉≥=τ  is the 

exit time of Brownian motion from D. We give a Mathematical implementation of function   for 
different choices of  f  and domain D (half-plane, unit disc, rectangle, triangle) and we apply it to obtain 
some numerical results.  
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1. INTRODUCTION 
 

The Dirichlet Problem is named after 
German mathematician Gustav Lejeune 
Dirichlet (1805- 1859) (see [3]). 

 The Dirichlet problem for harmonic 
functions always has a solution, and that 
solution is unique, when the boundary is 
sufficiently smooth and f is continuous. 

The goal of the present paper is to present 
some applications of Brownian motion in 
solving classical differential equations: the 
Dirichlet problem. 

Brownian motion, named after the Scottish 
botanist Robert Brown in 1828, is the unique 
process with the following proprieties:  

a) No memory, which means that 
... , , ,

231201 tttttt BBBBBB −−−   are 
independent; 

b) Invariance, which means that the 
distribution of  depends only 
on t ; 

sts BB −+

c) Continuity which means that  is 
continuous a.s. and  is nowhere 
differentiable a.s. 

tBt →

tBt →

d) 00 =B , with mean ( ) 0=tBE  and 

variance ( ) 2tBVar t = .  
Definition. A d-dimenional Brownian motion 
starting at  is a stochastic process  
with the following proprieties: 

dRx∈ tB
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a) ; 00 =B
b) For all ,  is a normal 

random variable 
ts <≤0 st BB −

( )stN −,0 ; 
c) is almost surly continuous.  tB

 
2. THE DIRICHLET PROBLEM 

 
2.1 The Dirichlet Problem. We will 

consider the well-known Dirichlet Problem for 
a domain dRD ⊂ , this is we will consider the 
problem of finding a harmonic function in a 
given domain D , continuous on D , with fixed 
boundary values on , satisfying the following 
initial value problem: find 

D∂
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where  denote the Laplacian operator, 
namely the differential operator in the variable 

Δ
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and  is a given function, continuous on 
boundary of the domain 

f
D . 

        In general, the solution of the above 
boundary value problem may not exist. 
However the existence of the solution is 
closely related to the regularity of the 
boundary of the domain D . 
Definition. A point  is called regular 
for the set 

dRx∈
dRA ⊂  if a Brownian motion 

starting at x  enters the set A  immediately, 
that is 
 

 ( ) 10 ==A
x TP , 

 

where }:0inf{ ABtT tA ∈>=  is the hitting 
time of the set A  by a d-dimensional 
Brownian motion  starting attB x . 
Example. a) The point  is regular for 
the ball  but is not regular 
for

00 =z
( )1,1B ,

( ) }0{\1,0B . 

b) In the case of unit disk }1:2 <∈ xRU , 
all poin on the unit circle 

{= x
ts 

}1:∂U { 2 =∈= xRx  are regular for
rity conditions on

cU . 
       Under minimal regula  D  
and f , the main result is the following: 

dRD ⊂Theorem. Let  be a bounde omd d ain 
for which every point of D∂  is regular for cD . 
If RDf →∂:  is a continuous function, then 

 

there exists a unique solution of the Dirichlet 
problem (1), explicitly given by 
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Bf τ                                   (2) 
 
where  

)( Exu x=

  is a d-dimensional Brownian motion  - tB

starting at Dx∈ ; 
 - D }:0inf{ DBt t  is the lifetime of the =τ > ∉
Brownian motion tB , killed on exiting D ; 

 - xE  den theotes  expectation of function
exit point of t

 f  
in he Brownian motion 

tB  from domain

the 
D

Bτ  

D . 
oofPr . See [4, p. 111-113]. 

Example. Consider the domain ( )rBD ,0=  

and the function ( ) 22, yxyf −= . Then the 
ollowing: 

x
probabilistic solution is the f
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      2.2 A numerical algorithm. We will 
 to be the closed triangular domain 

with vertices (-a, 0), (b, 0) and (0, c). We will 

d 

consider D

try to elaborate an algorithm for discretizing 
the kille Brownian motion in a simply 
bounded domain, using some recent results 
(see [1]) and [2]). 
     First, if ( )

Nn
k

nkX
∈−22

 is a simple random 

walk on the lattice k
jumps to on arest neighbors every 

k22−  units of 
that

k DZD =∩ − 22  wh  
e of its ne
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ich
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 is a killed Brownian motion 
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tBf , where tB
in D  starting at the point ) Dxxx ( ∈= 2,1 , is 
given by 

    ( ) ( )tt XfBf ≈ . 
 

hen the 

 

numerical approximation of expected 
ue  is given by 

T
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ere. Using 
ematica (see [5]) source presen d below, 

e obtain the approximating domain  in the 

 
2.3 Using Mathematica softw

Math te
w 1
Fig. 1 below, in the case of a triangle with 
vertices at (-4, 0), (2, 0) and (0, 6) (See 
article).  
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Which shows that  can be written as 
follows     
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a=4; b=2; c=6; k=3; 
abc={{b,0},{0,c},{-a,0},{b,0}}; 
triangle={Thickness[.01],RGBColor[1,0,0],Li
ne[abc]}; 
incr=(1/2^k); 
x=Table[i*incr,{i,-IntegerPart[a*2^k], 
IntegerPart[b*2^k]}]; 
y=Table[j*incr,{j,0,IntegerPart[c*2^k]}]; 
imin=Table[-IntegerPart[a*2^k-a*j/c], 
{j,0,IntegerPart[c*2^k]}]; 
imax=Table[IntegerPart[b*2^k-b*j/c], 
{j,0,IntegerPart[c*2^k]}]; 
points=Table[Disk[{x[[i+1]],y[[j+1]]},0.05],{j
,0,IntegerPart[c*2^k]},{i,imin[[j+1]]+IntegerP
art[a*2^k],imax[[j+1]]+IntegerPart[a*2^k]}]; 
Graphics[{RGBColor[0,0,1],GraphicsGroup[{
triangle,points}]},GridLines Automatic, 
Axes Automatic,AspectRatio Automatic,
PlotRange {{-a-1,b+1},{-1,c+1}}] 

→
→ →

→
Neighbour:=Function[{i,j},nbs={};  
If[i+1≤ imax[[j+1]], 
nbs=Append[nbs,{i+1,j}]]; 
If[imin[[j+1]]≤ i-1,nbs=Append[nbs,{i-1,j}]]; 
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If[(j<IntegerPart[c*2^k]) && (imin[[j+2]] ≤ i) 
&&(i imax[[j+2]]),bs=Append[nbs,{i,j+1}]]; ≤
If[(j>0) && (imin[[j]] i) && (i  imax[[j]]), 
nbs=Append[nbs,{i,j-1}]]; 
nbs[[RandomInteger[{1,Length[nbs]}]]]]; 

≤ ≤
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Fig. 1. The approximating domain  1D
 
Increasing the discretization level to k=4, we 
obtain more points-neighbors, as in Fig. 2 
below.  

 
Fig. 2. The approximating domain  4D

 

For a given function f we will obtain a 
numerical approximation of the expected value 

( )t
x BfE  with respect to a Brownian motion in 

a triangle starting at x of the value of the 
function f at the point , value that 
correspondes to the solution of the Dirichlet 
Problem 

tB

( ),)(
D

BfExu x
τ= in the given 

triangular region.  
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